Unit: mm

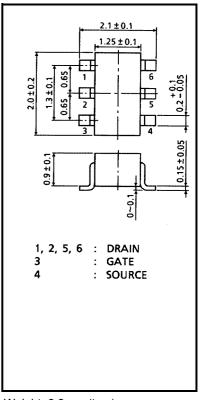
SSM6K06FU

High Speed Switching Applications

• Small package

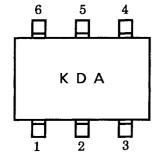
• Low on resistance: $R_{on} = 160 \text{ m}\Omega \text{ max} (@V_{GS} = 4 \text{ V})$

: $R_{on} = 210 \text{ m}\Omega \text{ max} (@V_{GS} = 2.5 \text{ V})$

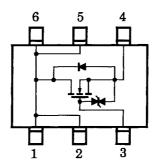

• Low gate threshold voltage

Maximum Ratings (Ta = 25°C)

Characteristics		Symbol	Rating	Unit	
Drain-source voltage		V_{DS}	20	V	
Gate-source voltage		V _{GSS}	±12	V	
Drain current	DC	ID	1.1	Α	
	Pulse	I _{DP}	2.2		
Drain power dissipation (Ta = 25°C)		P _D (Note 1)	300	mW	
Channel temperature		T _{ch}	150	°C	
Storage temperature range		T _{stg}	−55~150	°C	


Note 1: Mounted on FR4 board.

 $(25.4 \text{ mm} \times 25.4 \text{ mm} \times 1.6 \text{ t}, \text{ Cu pad: } 0.32 \text{ mm}^2 \times 6) \text{ Figure 1.}$



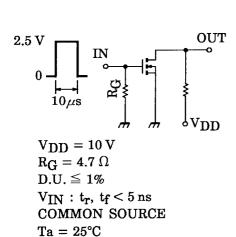
Weight: 6.8 mg (typ.)

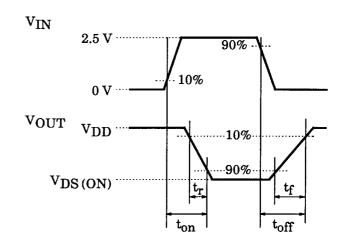
Marking

Equivalent Circuit (top view)

Handling Precaution

When handling individual devices (which are not yet mounting on a circuit board), be sure that the environment is protected against electrostatic electricity. Operators should wear anti-static clothing, and containers and other objects that come into direct contact with devices should be made of anti-static materials.


SSM6K06FU


Electrical Characteristics (Ta = 25°C)

Charae	cteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage curr	ent	I _{GSS}	$V_{GS} = \pm 12 \text{ V}, V_{DS} = 0$	_	_	±1	μΑ
Drain-source brea	kdown voltage	V (BR) DSS	$I_D = 1 \text{ mA}, V_{GS} = 0$	20	_	_	V
Drain cut-off curre	nt	I _{DSS}	$V_{DS} = 20 \text{ V}, V_{GS} = 0$	_	_	1	μА
Gate threshold vol	Itage	V _{th}	$V_{DS} = 3 \text{ V}, I_{D} = 0.1 \text{ mA}$	0.6	_	1.1	V
Forward transfer a	admittance	Y _{fs}	$V_{DS} = 3 \text{ V}, I_D = 0.5 \text{ A}$ (Note 2)	1.2	_	_	S
Drain-source ON resistance		R _{DS (ON)}	$I_D = 0.5 \text{ A}, V_{GS} = 4 \text{ V}$ (Note 2)	_	120	160	mΩ
			$I_D = 0.5 \text{ A}, V_{GS} = 2.5 \text{ V}$ (Note 2)	_	160	210	
Input capacitance		C _{iss}	V _{DS} = 10 V, V _{GS} = 0, f = 1 MHz	_	125	_	pF
Reverse transfer of	capacitance	C _{rss}	$V_{DS} = 10 \text{ V}, V_{GS} = 0, f = 1 \text{ MHz}$		30	_	pF
Output capacitanc	e	Coss	V _{DS} = 10 V, V _{GS} = 0, f = 1 MHz		75	_	pF
Switching time	Turn-on time	t _{on}	V_{DD} = 10 V, I_{D} = 0.5 A, V_{GS} = 0~2.5 V, R_{G} = 4.7 Ω	_	42	_	- ns
	Turn-off time	t _{off}		_	100	—	

Note 2: Pulse test

Switching Time Test Circuit

Precaution

 V_{th} can be expressed as voltage between gate and source when low operating current value is ID = 100 μA for this product. For normal switching operation, V_{GS} (on) requires higher voltage than V_{th} and V_{GS} (off) requires lower voltage than V_{th} .

(Relationship can be established as follows: V_{GS} (off) $< V_{th} < V_{GS}$ (on))

Please take this into consideration for using the device.

 $\ensuremath{\text{VGS}}$ recommended voltage of 2.5 V or higher to turn on this product.